
Noname manuscript No.
(will be inserted by the editor)

On Scheduling Coflows∗†

Saba Ahmadi* · Samir Khuller · Manish
Purohit · Sheng Yang

Received: date / Accepted: date

Abstract Applications designed for data-parallel computation frameworks
such as MapReduce usually alternate between computation and communi-
cation stages. Coflow scheduling is a recent popular networking abstraction
introduced to capture such application-level communication patterns in data-
centers. In this framework, a datacenter is modeled as a single non-blocking
switch with m input ports and m output ports. A coflow j is a collection of
flow demands {djio}i∈{1,··· ,m},o∈{1,··· ,m} that is said to be complete once all of
its requisite flows have been scheduled.

We consider the offline coflow scheduling problem with and without re-
lease times to minimize the total weighted completion time. Coflow scheduling
generalizes the well studied concurrent open shop scheduling problem and is
thus NP-hard. Qiu, Stein and Zhong [?] obtain the first constant approxima-
tion algorithms for this problem via LP rounding and give a deterministic
67
3 -approximation and a randomized (9 + 16

√
2

3) ≈ 16.54-approximation algo-
rithm. In this paper, we give a combinatorial algorithm that yields a deter-
ministic 5-approximation algorithm for coflow scheduling with release times,
and a deterministic 4-approximation for the case without release times. As

∗ A preliminary version of this paper appears in Proceedings of IPCO 2017.

† This work is supported by NSF grants CNS 156019 and CCF 1655073 (Eager), and
partially supported by an Amazon grant.

Saba Ahmadi, Sheng Yang
University of Maryland, College Park
E-mail: {saba,styang}@cs.umd.edu

Manish Purohit
Google, Mountain View
E-mail: mpurohit@google.com

Samir Khuller
Northwestern University
E-mail: samir.khuller@northwestern.edu

for concurrent open shop problem with release times, we give a combinatorial
3-approximation algorithm.

Keywords Coflow scheduling · Concurrent Open Shop

1 Introduction

Large scale data centers have emerged as the dominant form of computing
infrastructure over the last decade. The success of data-parallel computing
frameworks such as MapReduce [?], Hadoop [?], and Spark [?] has led to a
proliferation of applications that are designed to alternate between computa-
tion and communication stages. Typically, the intermediate data generated by
a computation stage needs to be transferred across different machines during a
communication stage for further processing. For example, there is a “Shuffle”
phase between every consecutive “Map” and “Reduce” phases in MapReduce.
With an increasing reliance on parallelization, these communication stages are
responsible for a large amount of data transfer in a datacenter. Chowdhury
and Stoica [?] introduced coflows as an effective networking abstraction to rep-
resent the collective communication requirements of a job. In this paper, we
consider the problem of scheduling coflows to minimize weighted completion
time and give improved approximation algorithms for this basic problem.

The communication phase for a typical application in a modern data center
may contain hundreds of individual flow requests, and the phase ends only
when all of these flow requests are satisfied. A coflow is defined as the collection
of these individual flow requests that all share a common performance goal.
The underlying data center is modeled as a single m×m non-blocking switch
that consists of m input ports and m output ports. We assume that each port
has unit capacity, i.e., it can handle at most one unit of data per unit time.
Modeling the data center itself as a simple switch allows us to focus solely
on the scheduling task instead of the problem of routing flows through the
network. Each coflow j is represented as a m ×m integer matrix Dj = [djio]

where the entry djio indicates the number of data units that must be transferred
from input port i to output port o for coflow j. Figure 1 shows a single coflow
over a 2 × 2 switch. For instance, the coflow depicted needs to transfer 2 units
of data from input a to output b and 3 units of data from input a to output
d. Each coflow j also has a weight wj that indicates its relative importance,
and a release time rj .

2

Input
Ports

2

3 1

4

2 3

1 4

a

c

b d
a b

c d

Output
Ports

Bipartite Graph
Representation

Matrix
 Representation

[]

Fig. 1 An example coflow over a 2 × 2 switch. The figure illustrates two
equivalent representations of a coflow - (i) as a weighted, bipartite graph
over the set of ports, and (ii) as a m×m integer matrix.

A coflow j is available to be scheduled at its release time rj and is said to
be completed when all the flows in the matrix Dj have been scheduled. More
formally, the completion time Cj of coflow j is defined as the earliest time such

that for every input i and output o, djio units of its data have been transferred
from port i to port o . We assume that time is slotted and data transfer within
the switch is instantaneous. Since each input port i can transmit at most one
unit of data and each output port o can receive at most one unit of data in
each time slot, a feasible schedule for a single time slot can be described as
a matching. Our goal is to find a feasible schedule that minimizes the total
weighted completion time of the coflows, i.e., minimize

∑
j wjCj .

1.1 Prior Related Work

Chowdhury and Stoica [?] introduced the coflow abstraction to describe the
prevalent communication patterns in data centers. Since then coflow schedul-
ing has been a topic of active research [?,?,?,?] in both the systems and theory
communities. Although coflow aware network schedulers have been found to
perform very well in practice in both the offline [?] and online [?] settings, no
O(1) approximation algorithms were known even in the offline setting until
recently. Since the coflow scheduling problem generalizes the well-studied con-
current open shop scheduling problem, it is NP-hard to approximate within a
factor better than (2− ε) [?,?].

For the concurrent open shop scheduling problem, an LP-relaxation yields
a 2-approximation algorithm when all release times are zero [?,?,?] and a 3-
approximation algorithm for arbitrary release times [?,?]. Mastrolilli et al. [?]
showed a 2-approximation for concurrent open shop without release times.

For the special case when all coflows have zero release time, Qiu, Stein and
Zhong [?] established the first polynomial-time constant approximation for this
problem. They obtained a deterministic 64

3 approximation and a randomized

(8+ 16
√
2

3) approximation algorithm for the problem of minimizing the weighted
completion time. For coflow scheduling with arbitrary release times, Qiu et

3

al. [?] claimed a deterministic 67
3 approximation and a randomized (9 + 16

√
2

3)
approximation algorithm. However in Appendix B, we demonstrate a subtle
error in their proof that deals with non-zero release times. We show that their
techniques in fact only yield a deterministic 76

3 -approximation algorithm for
coflow scheduling with release times. However their result holds for the case
with equal release times.

By exploiting a connection with the well-studied concurrent open shop
scheduling problem, Luo et al. [?] claim a 2-approximation algorithm for coflow
scheduling when all the release times are zero. Unfortunately, as we show in
Appendix C, their proof is flawed and the result does not hold.

Khuller et al. [?] obtained a deterministic 12-approximation algorithm for
coflow scheduling with arbitrary release times. For the special case when all
release times are zero they obtained a deterministic 8-approximation and a
randomized 3+2

√
2 ≈ 5.83-approximation. Their approach is based on reduc-

ing coflow scheduling to the concurrent open shop scheduling problem.
In independent recent work, Shafiee and Ghaderi [?] obtained the same

approximation ratio, i.e. a deterministic 5-approximation algorithm with ar-
bitrary release times, and a 4-approximation without release time. This is
the same as our LP rounding results, which involves exponential many con-
straints. We go further and get a more practical primal-dual based algorithm
that achieves the same approximation bound for both cases.

In recent work, Khuller et al. [?] study coflow scheduling in the online
setting where the coflows arrive online over time. Using the results of this paper
(Theorem 2), they obtained an exponential time 7-competitive algorithm and
a polynomial time 14-competitive algorithm.

1.2 Our Contributions

The main algorithmic contribution of this paper is a deterministic, primal-dual
algorithm for the offline coflow scheduling problem with improved approxima-
tion guarantees.

Theorem 1 There exists a deterministic, combinatorial, polynomial time 5-
approximation algorithm for coflow scheduling with release times.

Theorem 2 There exists a deterministic, combinatorial, polynomial time 4-
approximation algorithm for coflow scheduling without release times.

Our results significantly improve upon the approximation algorithms de-
veloped by Khuller and Purohit [?] whose techniques yield a 12-approximation
algorithm for the case with release time, and an 8-approximation algorithm
without release time. In addition, our algorithm is completely combinatorial
and does not require solving a linear program. A LP-based version is also pro-
vided together with its proof, to help show the intuition behind the primal-dual
one.

We also extend the primal dual algorithm by Mastrolilli et al. [?] to give a 3-
approximation algorithm for the concurrent open shop problem when the jobs
have arbitrary release times. Leung et al. [?] have a LP based algorithm which

4

gives a 3-approximation as well, but our approach is the first combinatorial
algorithm which achieves this bound.

Theorem 3 There exists a deterministic, combinatorial, polynomial time 3-
approximation algorithm for concurrent open shop scheduling with release times.

1.3 Connection to Concurrent Open Shop

The coflow scheduling problem generalizes the well-studied concurrent open
shop problem [?,?,?,?,?]. In the concurrent open shop problem, we have a set
of m machines and each job j (with weight wj) is composed of m tasks {tji}mi=1,

one on each machine. Let pji denote the processing requirement of task tji . A
job j is considered completed once all its tasks have completed. A machine
can perform at most one unit of processing at a time. The goal is to find a fea-
sible schedule that minimizes the total weighted completion time of jobs. An
LP-relaxation yields a 2-approximation algorithm for concurrent open shop
scheduling when all release times are zero [?,?,?] and a 3-approximation algo-
rithm for arbitrary release times [?,?]. The approximation ratio is improved to
2 by Im et al. [?], but with an LP-based method. Mastrolilli et al. [?] show that
a simple primal-dual algorithm also yields a 2-approximation for concurrent
open shop without release times. We develop a primal-dual algorithm that
yields a 3-approximation for concurrent open shop with release times.

The concurrent open shop problem can be viewed as a special case of coflow
scheduling when the demand matrices Dj are diagonal for all coflows j [?,?].
We use our algorithm to get a schedule for coflows and then schedule the
jobs in the same order. Since coflow is preemptive by definition, our algorithm
gives a preemptive schedule. One might think by reducing the concurrent open
shop problem to coflow scheduling we get a preemptive schedule. However for
the case when all release times are zero, the schedule is automatically non-
preemptive.

At first glance, it appears that coflow scheduling is much harder than con-
current open shop. For instance, while concurrent open shop always admits an
optimal permutation schedule, such a property does not hold for coflows [?].
Surprisingly, we show that using a similar LP relaxation as for the concurrent
open shop problem, we can design a primal dual algorithm to obtain a per-
mutation of coflows such that sequentially scheduling the coflows after some
post-processing in this permutation leads to provably good coflow schedules.

2 Preliminaries

We first introduce some notation to facilitate the following discussion. For
every coflow j and input port i, we define the load Li,j =

∑m
o=1 d

j
io to be

the total amount of data that coflow j needs to transmit through input port
i. Similarly, we define Lo,j =

∑m
i=1 d

j
io for every coflow j and output port

o. Equivalently, a coflow j can be represented by a weighted, bipartite graph

5

Gj = (I,O,Ej) where the set of input ports (I) and the set of output ports
(O) form the two sides of the bipartition and an edge e = (i, o) with weight
wGj (e) = djio represents that the coflow j requires djio units of data to be
transferred from input port i to output port o. We will abuse notations slightly
and refer to a coflow j by the corresponding bipartite graph Gj when there is
no confusion.

Representing a coflow as a bipartite graph simplifies some of the notation
that we have seen previously. For instance, for any coflow j, the load of j on
port i is simply the weighted degree of vertex i in graph Gj , i.e., if NGj (i)
denotes the set of neighbors of node i in the graph Gj .

Li,j = degGj (i) =
∑

o∈NGj (i)

wGj (i, o) (1)

For any graphGj , let∆(Gj) = maxs∈I∪O degGj (s) = max{maxi Li,j ,maxo Lo,j}
denote the maximum degree of any node in the graph, i.e., the load on the
most heavily loaded port of coflow j.

In our algorithm, we consider coflows obtained as the union of two or
more coflows. Given two weighted bipartite graphs Gj = (I,O,Ej) and Gk =
(I,O,Ek), we define the cumulative graph Gj ∪Gk = (I,O,Ej ∪ Ek) to be a
weighted bipartite graph such that wGj∪Gk(e) = wGj (e) +wGk(e). We extend
this notation to the union of multiple graphs in an obvious manner.

2.1 Scheduling a Single Coflow

Before we present our algorithm for the general coflow scheduling problem,
it is instructive to consider the problem of feasibly scheduling a single coflow
subject to the matching constraints. Given a coflow Gj , the maximum degree
of any vertex in the graph ∆(Gj) = maxv degGj (v) is an obvious lower bound
on the amount of time required to feasibly schedule coflow Gj . In fact, the
following lemma by Qiu et al. [?] shows that this bound is always achievable
for any coflow. The proof follows by repeated applications of Hall’s Theorem
on the existence of perfect matchings in bipartite graphs.

Lemma 1 [?] There exists a polynomial time algorithm that schedules a single
coflow Gj in ∆(Gj) time steps.

Lemma 1 also implicitly provides a way to decompose a bipartite graph G
into two graphs G1 and G2 such that ∆(G) = ∆(G1) +∆(G2). Given a time
interval (ts, te], the following corollary uses such a decomposition to obtain a
feasible coflow schedule for the given time interval by partially scheduling a
coflow if necessary.

Corollary 1 Given a sequence of coflows G1, G2, . . . , Gn, a start time ts, and
an end time te such that ts +

∑j−1
k=1∆(Gk) ≤ te < ts +

∑j
k=1∆(Gk), there

exists a polynomial time algorithm that finds a feasible coflow schedule for the
time interval (ts, te] such that -

6

– coflows G1, G2, . . . , Gj−1 are completely scheduled.

– coflow Gj is partially scheduled so that ∆(G̃j) = ts +
∑j
k=1∆(Gk) − te

where G̃j denotes the subset of coflow j that has not yet been scheduled.
– coflows Gj+1, . . . , Gn are not scheduled.

Proof By scheduling coflows G1, G2, . . . , Gj−1 sequentially using Lemma 1, we

can completely schedule these coflows by time ts+
∑j−1
k=1∆(Gk) ≤ te. Similarly

using Lemma 1, we find a schedule S for coflow Gj that requires ∆(Gj) time

steps. We schedule only the first te − (ts +
∑j−1
k=1∆(Gk)) matchings from S

after all the previous coflows have been completed. This partial scheduling of
coflow Gj ends at time te as desired. Let G̃j ⊂ Gj denote the partial coflow
that has not yet been scheduled. Inspecting schedule S, we observe that S
schedules the partial coflow G̃j from time steps te − (ts +

∑j−1
k=1∆(Gk)) to

∆(Gj). Hence, we must have ∆(G̃j) ≤ ts +
∑j
k=1∆(Gk)− te.

2.2 Linear Programming Relaxation

By exploiting the connection with concurrent open-shop scheduling, we adapt
the LP relaxation used for the concurrent open-shop problem [?,?] to formulate
the following linear program as a relaxation of the coflow scheduling problem.
We introduce a variable Cj for every coflow j to denote its completion time.
Let J = {1, 2, . . . , n} denote the set of all coflows and M = I ∪ O denote the
set of all the ports. Figure 2 shows our LP relaxation.

min
∑
j∈J

wjCj

subject to, Cj ≥ rj + Li,j ∀j ∈ J,∀i ∈M (2)

∑
j∈S

Li,jCj ≥
1

2

∑
j∈S

L2
i,j +

∑
j∈S

Li,j

2 ∀i ∈M,∀S ⊆ J (3)

Fig. 2 LP1 for Coflow Scheduling

The first set of constraints (2) ensure that the completion time of any job j
is at least its release time rj plus the load of coflow j on any port i. The second
set of constraints (3) are standard in scheduling literature (e.g. [?]) and are
used to effectively lower bound the completion time variables. For simplicity,
we define fi(S) for any subset S ⊆ J and each port i as follow

fi(S) =

∑
j∈S L

2
i,j + (

∑
j∈S Li,j)

2

2
(4)

7

3 High Level Ideas

We use the LP above in Fig 2 and its dual to develop a combinatorial algorithm
(Algorithm 1) in Section 4.1 to obtain a good permutation of the coflows. This
primal dual algorithm is inspired by Davis et al. [?] and Mastrolilli et al. [?].
As we show in Lemma 5, once the coflows are permuted as per this algorithm,
we can bound the completion time of a coflow j in an optimal schedule in
terms of ∆(

⋃
k≤j Gk), the maximum degree of the union of the first j coflows

in the permutation.
A näıve approach now would be to schedule each coflow independently

and sequentially using Lemma 1 in this permutation. Since all coflows k ≤ j
would need to be scheduled before starting to schedule j, the completion time
of coflow j under such a scheme would be

∑
k≤j ∆(Gk). Unfortunately, for

arbitrary coflows we can have
∑
k≤j ∆(Gk)� ∆(

⋃
k≤j Gk). For instance, Fig

3 shows three coflows such that ∆(G1) + ∆(G2) + ∆(G3) = 300 > ∆(G1 ∪
G2 ∪G3) = 101.

100 ba

dc

e f

G1

ba

dc

e f

G2

1

99

ba

dc

e f

G3

1

99

Fig. 3 Example that illustrates sequentially scheduling coflows indepen-
dently can lead to bad schedules.

One key insight is that sequentially scheduling coflows one after another
may waste resources, such as in Fig 3. Since the amount of time required to
completely schedule a single coflow k only depends on the maximum degree of
the graph Gk, if we augment graph Gk by adding edges such that its maximum
degree does not increase, the augmented coflow can still be scheduled in the
same time interval. This observation leads to the natural idea of “shifting”
edges from a coflow j later in the permutation to an earlier coflow k (k < j),
so long as the release time of j is still respected, as such a shift does not delay
coflow k but may significantly reduce the requirements of coflow j. Consider
for instance the coflows in Figure 3 when all release times are zero; shifting the
edge (c, d) from graph G2 to G1 and the edges (e, f) and (c, f) from G3 to G1

leaves ∆(G1) unchanged but drastically reduces ∆(G2) and ∆(G3). Let’s call
the coflows after shifting edges G′1, G

′
2, G

′
3. After moving edges, ∆(G′1) = 100,

∆(G′2) = 1 and ∆(G′3) = 0. If we schedule G′1, G
′
2, G

′
3 sequentially, completion

time of G1 (C1) will be ∆(G′1) = 100, C2 = ∆(G′1) + ∆(G′2) = 101 and
C3 = ∆(G′1) = 100. Before shifting edges, on the country, completion times

8

were C1 = 100, C2 = 200, C3 = 300. Thus shifting edges reduces completion
times.

In Algorithm 3 in Section 4.2, we formalize this notion of shifting edges
and prove that after all such edges have been shifted, sequentially scheduling
the augmented coflows leads to a provably good coflow schedule.

In Section 6 we present an alternative approach using LP Rounding for
finding a good permutation of coflows. Then we schedule the coflows using
Algorithm 3 and give proofs for the non-combinatorial version of Theorem 1
and Theorem 2.

4 Approximation Algorithm for Coflow Scheduling with Release
Times

In this section we present a combinatorial 5-approximation algorithm for min-
imizing the weighted sum of completion times of a set of coflows with release
times. Our algorithm consists of two stages. In the first stage, we design a
primal-dual algorithm to find a good permutation of the coflows. In the sec-
ond stage, we show that scheduling the coflows sequentially in this ordering
after some postprocessing steps yields a provably good coflow schedule.

4.1 Finding a Permutation of Coflows Using a Primal Dual Algorithm

Although our algorithm does not require solving a linear program, we use the
linear program in Figure 2 and its dual (Figure 4) in the design and analysis
of the algorithm.

max
∑
j∈J

∑
i∈M

αi,j(rj + Li,j) +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

subject to,
∑
i∈M

αi,j +
∑
i∈M

∑
S/j∈S

Li,jβi,S ≤ wj ∀j ∈ J

αi,j ≥ 0 ∀j ∈ J, i ∈M
βi,S ≥ 0 ∀i ∈M, ∀S ⊆ J

Fig. 4 Dual of LP1

Our algorithm works as follows. We build up a permutation of the coflows
in reverse order iteratively. Let κ be a constant that we specify later. Let J
be the set of unscheduled jobs, initially J = {1, 2, · · · , n}. In any iteration, let
j be the unscheduled job with the latest release time, let µ be the port with
the highest overall load and let Lµ be the load on port µ. Now if rj > κLµ,
we raise the dual variable αµ,j until the corresponding dual constraint is tight
and place coflow j at the last in the permutation. But if rj ≤ κLµ, we raise the

9

dual variable βµ,J until the dual constraint for some job j′ becomes tight and
place coflow j′ at the last in the permutation. Algorithm 1 gives the formal
description of the complete algorithm.

Algorithm 1: Permuting Coflows

1 J is the set of unscheduled jobs and initially J = {1, 2, · · · , n};
2 Initialize αi,j = 0 for all i ∈M, j ∈ J and βi,S = 0 for all i ∈M,S ⊆ J ;
3 Li =

∑
j∈J Lij , ∀i ∈M ; // load of port i

4 for k = n, n− 1, · · · , 1 do
5 µ(k) = arg maxi∈M Li ; // determine the port with highest load

6 j = arg max`∈J r` ; // determine job that released last

7 if rj > κ · Lµ(k) then
8 αµ(k),j = (wj −

∑
i∈M

∑
S3j Li,jβi,S);

9 σ(k)← j;

10 end
11 else if rσ(k) ≤ κ · Lµ(k) then

12 j′ = arg minj∈J

(
wj−

∑
i∈M

∑
S3j Li,jβi,S

Lµ(k),j

)
;

13 βµ(k),J =

(
wj′−

∑
i∈M

∑
S3j′ Li,j′βi,S

Lµ(k),j′

)
;

14 σ(k)← j′;

15 end
16 J ← J \ σ(k);
17 Li ← Li − Li,σ(k), ∀i ∈M ;

18 end
19 Output permutation σ(1), σ(2), · · · , σ(n);

4.2 Scheduling Coflows According to a Permutation

We assume without loss of generality that the coflows are ordered based on
the permutation given by Algorithm 1, i.e. σ(j) = j.

As we discussed in Section 3, näıvely scheduling the coflows sequentially in
this order may not be a good idea. However, by appropriately moving edges
from a coflow j to an earlier coflow k (k < j), we can get a provably good
schedule. The crux of our algorithm lies in the subroutine MoveEdgesBack
defined in Algorithm 2.

Given two bipartite graphs Gk and Gj (k < j), MoveEdgesBack greedily
moves weighted edges from graph Gj to Gk so long as the maximum degree of
graph Gk does not increase. The key idea behind this subroutine is that since
the coflow k requires ∆(Gk) time units to be scheduled feasibly, the edges
moved back can now also be scheduled in those ∆(Gk) time units for “free”.

If all coflows have zero release times, then we can safely move edges of a
coflow Gj to any Gk such that k < j. However, with the presence of arbitrary
release times, we need to ensure that edges of coflow Gj do not violate their
release time, i.e. they are scheduled only after they are released. Algorithm 3

10

Algorithm 2: The MoveEdgesBack subroutine.

1 Function MoveEdgesBack(Gk, Gj)
2 for e = (u, v) ∈ Gj do
3 δ = min(∆(Gk)− degGk (u),∆(Gk)− degGk (v), wGj (e));

4 wGj (e) = wGj (e)− δ;
5 wGk (e) = wGk (e) + δ;

6 end
7 return Gk, Gj ;

describes the pseudo-code for coflow scheduling with arbitrary release times.
Here q denote the number of distinct values taken by the release times of the n
coflows. Further, let t1 < t2 < . . . < tq be the ordered set of the release times.
For simplicity, we define tq+1 = T as a sufficiently large time horizon.

At any time step ti, let G′j ⊆ Gj denote the subgraph of coflow j that has
not been scheduled yet. We consider every ordered pair of coflows k < j such
that both coflows are released by time t and MoveEdgesBack from graph G′j
to graph G′k. Finally, we schedule the coflows sequentially in the order using
Corollary 1 until all coflows are scheduled completely or we reach time ti+1

when a new set of coflows gets released and the process repeats.

Algorithm 3: Coflow Scheduling

1 q ← number of distinct release times; tq+1 ← T ;
2 t1, t2, . . . , tq ← distinct release time in increasing order ;
3 for i = 1, 2, . . . , q do
4 // Each loop finds a schedule for time interval (ti, ti+1]
5 for j = 1, 2, . . . , n do
6 G′j ← unscheduled part of Gj ;

7 end
8 for k = 1, 2, . . . , n− 1 do
9 if rk ≤ ti then

10 for j = k + 1, . . . , n do
11 if rj ≤ ti then G′k, G

′
j ← MoveEdgesBack(G′k, G

′
j) ;

12 end

13 end

14 end
15 Schedule (G′1, G

′
2, . . . , G

′
n) in (ti, ti+1] using Corollary 1;

16 end

5 Analysis

We first analyze Algorithm 3 and upper bound the completion time of a coflow
j in terms of the maximum degree of the cumulative graph obtained by com-
bining the first j coflows in the given permutation. For simplicity, we first

11

state the proof when all release times are zero, then proceed to the case with
arbitrary release time

5.1 Coflows with Zero Release Times

For ease of presentation, we first analyze the special case when all coflows
are released at time zero. In this case, we have q = 1 in Algorithm 3, so the
outer for loop is only executed once. The following lemma shows that after
the MoveEdgesBack subroutine has been executed on every ordered pair of
coflows, for any coflow j, the sum of maximum degrees of graphs G′k (k ≤ j)
is at most twice the maximum degree of the cumulative graph obtained by
combining the first j coflows.

Lemma 2 For all j ∈ {1, 2, . . . n},
∑
k≤j ∆(G′k) ≤ 2∆(

⋃
k≤j Gk).

Proof Since the graphs G′k keep changing during the course of the algorithm,
for the sake of analysis, let Gk|j where k < j be the state of the graph G′k
immediately after we have transferred all possible edges from G′j to G′k. Let
Gj|j denote the graph G′j after all possible edges have been moved to G′j−1.
Since we move edges back to a graph G′k only if it does not increase the
maximum degree, we have the following:

∆(G′k) = ∆(Gk|j) for all k ≤ j. (5)

For any j ∈ {1, 2, . . . , n}, consider the set S of graphs G1|j , G2|j , . . . Gj|j .
Let u be a vertex of maximum degree in Gj|j , i.e. degGj|j (u) = ∆(Gj|j) and
consider any edge e = (u, v) incident on u in Gj|j . Since edge (u, v) was not
moved to any of the graphs Gk|j for k < j, we must have that either u or v
had maximum degree in Gk|j . Let Su = {Gk|j | degGk|j (u) = ∆(Gk|j)} and
Sv = {Gk|j | degGk|j (v) = ∆(Gk|j)} denote the subsets of the graph where
vertex u or v has the maximum degree respectively.

Now, let Ĝj =
⋃j
k=1Gk|j be the union of the graphs Gk|j . Since Ĝj contains

all edges from the graphs G1, . . . , Gj and no edges from graphs Gl for l > j,

Ĝj is identical to the cumulative graph of the first j coflows. In particular, we
have the following:

∆(Ĝj) = ∆(
⋃
k≤j

Gk). (6)

Let us now consider the maximum degree of the graph Ĝj .

∆(Ĝj) ≥ max
{
degĜj (u), degĜj (v)

}
(7)

≥ max

{ ∑
G∈Su

degG(u),
∑
G∈Sv

degG(v)

}
(8)

= max

{ ∑
G∈Su

∆(G),
∑
G∈Sv

∆(G)

}
(9)

12

From Equation (5), we have the following:∑
k≤j

∆(G′k) =
∑
k≤j

∆(Gk|j) =
∑
G∈S

∆(G). (10)

However, since Su ∪ Sv = S as either u or v has maximum degree in every
graph in S, we get the following.

∑
k≤j

∆(G′k) ≤ 2 max

{ ∑
G∈Su

∆(G),
∑
G∈Sv

∆(G)

}
≤ 2∆(Ĝj) = 2∆(

⋃
k≤j

Gk)

where the last equality follows from Equation (6).

Lemma 3 Consider any coflow j and let Cj(alg) denote the completion time
of coflow j when scheduled as per Algorithm 3. Then Cj(alg) ≤ 2∆(

⋃
k≤j Gk).

Proof Let G′1, . . . , G
′
n denote the coflows after all the edges have been moved

backward. According to Lemma 1 each coflow G′k could be finished at time
∆(G′k), thus when the coflows are scheduled sequentially, we get the following.

Cj(alg) =
∑
k≤j

∆(G′k) ≤ 2∆(
⋃
k≤j

Gk)

where the last inequality follows from Lemma 2.

5.2 Coflows with Arbitrary Release Times

When the coflows have arbitrary release times, we can bound the completion
time of each coflow j in terms of the maximum degree of the cumulative graph
obtained by combining the first j coflows and the largest release time of all
the jobs before j in the permutation.

Lemma 4 For any coflow j, let Cj(alg) denote the completion time of coflow j
when scheduled as per Algorithm 3. Then Cj(alg) ≤ maxk≤j rk+2∆(

⋃
k≤j Gk)

Proof Consider any coflow j. Let ti = maxl≤j rl denote the earliest time when
all coflows in the set {1, 2, . . . , j} have been released. In Algorithm 3, consider
the ith iteration of the for loop. Let Gk,i denote the graph corresponding to
coflow k in iteration i before edges have been moved back, i.e., Gk,i denotes
the state of coflow k in iteration i after line 7. Since some edges from coflow
k may have already been scheduled in earlier iterations, we have Gk,i ⊆ Gk.
Let G′k,i denote the graph corresponding to coflow k after the MoveEdgesBack
subroutines have been executed, i.e. at line 14. We now claim that

Cj(alg) ≤ ti +
∑
k≤j

∆(G′k,i) (11)

13

If ti+1 ≥ ti+
∑
k≤j ∆(G′k,i), Corollary 1 guarantees that coflows 1 ≤ k ≤ j

will be completely scheduled sequentially in this iteration. Completion time of
coflow j is thus ti +

∑
k≤j ∆(G′k,i) as desired.

On the other hand, if ti+1 < ti+
∑
k≤j ∆(G′k,i), let p denote the first coflow

such that ti+1 < ti +
∑
k≤p∆(G′k,i). Corollary 1 now finds feasible schedules

for time slots ti to ti+1 such that all coflows k ≤ p−1 are completely scheduled
and coflow p is partially scheduled so that we have the following:

∆(G′p,i+1) = ∆(Gp,i+1) = ti +
∑
k≤p

∆(G′k,i)− ti+1 (12)

∆(G′k,i+1) = ∆(Gk,i+1) = 0,∀k ≤ p− 1. (13)

Also, since all the coflows 1 ≤ k ≤ j had already been released at time ti, any
new coflows that get released do not affect the movement of edges from graphs
corresponding to coflows 1 ≤ k ≤ j. Hence, we have:

∆(G′k,i+1) = ∆(G′k,i),∀p < k ≤ j (14)

From equations (12) - (14), we get:

ti+1 +
∑
k≤j

∆(G′k,i+1) = ti +
∑
k≤j

∆(G′k,i). (15)

Proceeding this way inductively, we obtain:

ti+x +
∑
k≤j

∆(G′k,i+x) = ti +
∑
k≤j

∆(G′k,i). (16)

where i + x is the last iteration such that ti+x < ti +
∑
k≤j ∆(G′k,i). By

Corollary 1 at the end of iteration i + x, coflow j is completely scheduled at
time ti+x +

∑
k≤j ∆(G′k,i+x) = ti +

∑
k≤j ∆(G′k,i) as desired, thus completing

the proof of the claim.
We can now bound Cj(alg) as follows.

Cj(alg) ≤ ti +
∑
k≤j

∆(G′k,i) ≤ ti + 2∆

⋃
k≤j

Gk,i

 ≤ ti + 2∆

⋃
k≤j

Gk

 .

(17)

where the second inequality follows from Lemma 2.

5.3 Analyzing the Primal-Dual Algorithm

We are now in a position to analyze Algorithm 1. Recall that we assume
that the jobs are sorted as per the permutation obtained by Algorithm 1, i.e.,
σ(k) = k, ∀k ∈ [n]. We first give a lemma, which will be proved in Section .

14

Lemma 5 If there is an algorithm that generates a feasible coflow schedule
such that for any coflow j, Cj(alg) ≤ amaxk≤j rk + b∆(

⋃
k≤j Gk) for some

constants a and b, then the total cost of the schedule is bounded as follows.∑
j

wjCj(alg) ≤ (a+
b

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

Theorem 1 There exists a deterministic, combinatorial, polynomial time 5-
approximation algorithm for coflow scheduling with release times.

Proof For scheduling coflows with arbitrary release times, Lemmas 4 and 5
(with a = 1 and b = 2) together imply that:

∑
j

wjCj(alg) ≤
(

1 +
2

κ

) n∑
j=1

∑
i∈M

αi,jrj + 2(κ+ 2)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

To minimize the approximation ratio, we substitute κ = 1
2 and obtain:

∑
j

wjCj(alg) ≤ 5

 n∑
j=1

∑
i∈M

αi,jrj +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

 ≤ 5 ·OPT,

where the last inequality follows from weak duality as α and β constitute a
feasible dual solution.

Theorem 2 There exists a deterministic, combinatorial, polynomial time 4-
approximation algorithm for coflow scheduling without release times.

Proof Lemmas 4 and 5 (with a = 0 and b = 2) together imply that:

∑
j

wjCj(alg) ≤ 2

κ

n∑
j=1

∑
i∈M

αi,jrj + 4
∑
i∈M

∑
S⊆J

βi,Sfi(S).

To minimize the approximation ratio, we substitute κ = 1
2 and obtain:

∑
j

wjCj(alg) ≤ 4

 n∑
j=1

∑
i∈M

αi,jrj +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

 ≤ 4 ·OPT,

where the last inequality follows from weak duality as α and β constitute a
feasible dual solution.

15

5.4 Primal Dual Analysis

We devote this section to prove Lemma 5.
Recall that we assume that the jobs are sorted as per the permutation

obtained by Algorithm 1, i.e., σ(k) = k, ∀k ∈ [n].
Let Sj be the set of jobs {1, · · · , j}. Let βi,j = βi,Sj and Li(Sj) =

∑
k≤j Li,k.

Also let µ(j) be the port with highest load in Sj , therefore Lµ(j)(Sj) =∑
k≤j Lµ(j),k = ∆(

⋃
k≤j Gk). We will first state a few observations regard-

ing the primal-dual algorithm.

Observation 1 The following statements hold.

(a) Every nonzero βi,S can be written as βµ(j),j for some job j.
(b) For every set Sj that has a nonzero βµ(j),j variable, if k ≤ j then rk ≤

κ · Lµ(j)(Sj).
(c) For every job j that has a nonzero αµ(j),j, rj > κ · Lµ(j)(Sj).
(d) For every job j that has a nonzero αµ(j),j, if k ≤ j then rk ≤ rj.

The correctness of Observation 1 can be directly obtained from Algorithm
1.

Lemma 6 For every job j,
∑
i∈M αi,j +

∑
i∈M

∑
k≥j Li,jβi,k = wj.

Proof A job j is added to the permutation in Algorithm 1 only if the constraint∑
i∈M αi,j +

∑
i∈M

∑
S/j∈S Li,jβi,S ≤ wj gets tight for this job, thus:∑
i∈M

αi,j +
∑
i∈M

∑
S/j∈S

Li,jβi,S = wj

∑
i∈M

αi,j +
∑
i∈M

∑
k≥j

Li,jβi,k = wj .

Observation 2 For any i ∈ M and S ⊆ J , we have that (
∑
j∈S Li,j)

2 ≤
2fi(S).

Lemma 5 If there is an algorithm that generates a feasible coflow schedule
such that for any coflow j, Cj(alg) ≤ amaxk≤j rk + b∆(

⋃
k≤j Gk) for some

constants a and b, then the total cost of the schedule is bounded as follows.∑
j

wjCj(alg) ≤ (a+
b

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

Proof In the following we denote Cj(alg) as Cj for ease of notation. By ap-
plying Lemma 6:

n∑
j=1

wj · Cj =

n∑
j=1

∑
i∈M

αi,j +
∑
i∈M

∑
k≥j

Li,jβi,k

 · Cj

16

=

n∑
j=1

∑
i∈M

αi,j · Cj +

n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k · Cj .

First let’s bound
∑n
j=1

∑
i∈M αi,j · Cj . Since ∆(

⋃
k≤j Gk) = Lµ(j)(Sj) :,

by applying Observation 1 parts (c), (d), we get:

n∑
j=1

∑
i∈M

αi,j · Cj

≤
n∑
j=1

∑
i∈M

αi,j

{
a ·max

`≤j
r` + b · Lµ(j)(Sj)

}

≤
n∑
j=1

∑
i∈M

αi,j

(
a · rj + b · rj

κ

)
≤
(
a+

b

κ

) n∑
j=1

∑
i∈M

αi,jrj .

Now we bound
∑n
j=1

∑
i∈M

∑
k≥j Li,jβi,kCj :

n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,kCj

≤
n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
a ·max`≤jr` + b · Lµ(j)(Sj)

}
≤

n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
a ·max`≤kr` + b · Lµ(j)(Sj)

}
.

By applying Observation 1 part (b):

≤
n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
aκ · Lµ(k)(Sk) + b · Lµ(j)(Sj)

}
≤ (aκ+ b)

n∑
k=1

∑
i∈M

∑
j≤k

Li,jβi,k · Lµ(k)(Sk)

≤ (aκ+ b)

n∑
k=1

∑
i∈M

βi,k
∑
j≤k

Li,j · Lµ(k)(Sk)

= (aκ+ b)

n∑
k=1

∑
i∈M

βi,k (Li(Sk)) · Lµ(k)(Sk)

≤ (aκ+ b)
∑
i∈M

n∑
k=1

βi,k
(
Lµ(k)(Sk)

)2
.

17

By sequentially applying Observation 2 and Observation 1 part (a), this is
upper bounded by

2(aκ+ b)
∑
i∈M

n∑
k=1

βi,kfµ(k)(Sk)

=2(aκ+ b)

n∑
k=1

βµ(k),kfµ(k)(Sk)

≤2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

Therefore,∑
j∈J

wjCj ≤
(
a+

b

κ

) n∑
j=1

∑
i∈M

αi,σ(j)rj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

6 An Alternative Approach Using LP Rounding

This alternative approach also consists of two stages. First, we find a good
permutation of coflows and after that we schedule the coflows sequentially in
this ordering using Algorithm 3.

Let Cj denote the completion time of job j in an optimal LP1 solution.
We assume without loss of generality that the coflows are ordered so that the
following holds.

C1 ≤ C2 ≤ . . . ≤ Cn (18)

We can use the LP-constraints to provide a lower bound on Cj in terms of
the maximum degree of the cumulative graph obtained by combining the first
j coflows. In particular, the following lemma follows from the constraints of
LP1.

Lemma 7 For each coflow j = 1, 2, . . . , n, the following inequality holds.

Cj ≥
1

2
max
i

{
j∑

k=1

Li,k

}
=

1

2
∆(
⋃
k≤j

Gk)

Proof Let S = {1, 2, . . . , j}. The LP constraint (3) implies that

max
i

{
j∑

k=1

Li,k · Ck

}
≥ max

i
fi(S) ≥ max

i

{
(
∑j
k=1 Li,k)2

2

}

Since Ck ≤ Cj , for each k = 1, 2, . . . j we have

Cj ·max
i
{
j∑

k=1

Li,k} = max
i

{
j∑

k=1

Li,kCj

}
≥ max

i

{
j∑

k=1

Li,kCk

}
≥ max

i

{
(
∑j
k=1 Li,k)2

2

}

18

which is equivalent to

Cj ≥
1

2
max
i

{
j∑

k=1

Li,k

}
=

1

2
∆(
⋃
k≤j

Gk)

6.1 Proof of the LP Rounding Version of the Main Theorems

Theorem 4 There exists a deterministic, polynomial time 4-approximation
algorithm for coflow scheduling without release times.

Proof Consider any coflow j and let Cj(alg) denote the completion time of
coflow j when scheduled as per Algorithm 3. Since all coflows have zero release
times, at time t1 = 0 all the coflows are arrived. Let G′1, . . . , G

′
n denote the

coflows after all the edges have been moved backward. According to Lemma
1 each coflow G′k could be finished at time ∆(G′k), thus when the coflows are
scheduled sequentially, we get the following.

Cj(alg) =
∑
k≤j

∆(G′k)

Applying Lemma 2 and Lemma 7:

Cj(alg) =
∑
k≤j

∆(G′k) ≤ 2∆(
⋃
k≤j

Gk) ≤ 4Cj

Hence, the total weighted completion time of our schedule can be bounded by
the objective of the optimal LP solution.

n∑
j=1

wjCj(alg) ≤ 4

n∑
j=1

wjCj ≤ 4OPT

Theorem 5 There exists a deterministic, polynomial time 5-approximation
algorithm for coflow scheduling with release times.

Proof

Cj(alg) ≤ max
k≤j

rk + 2∆(
⋃
k≤j

Gk) = max
k≤j

rk + 4Cj ≤ 5Cj

The first inequality follows from Lemma 4 and the second equality follows
from Lemma 7. The last inequality holds since Cj ≥ Ck for all 1 ≤ k ≤ j and
Ck ≥ rk.

The cost of obtained coflow schedule is

n∑
j=1

wjCj(alg) ≤ 5

n∑
j=1

wjCj ≤ 5OPT.

19

A A Combinatorial 3-approximation Algorithm For Concurrent
Open Shop with Release Times

Theorem 1 Algorithm 1 gives a 3-approximation for concurrent open shop scheduling with
release times.

Proof We use algorithm 1 to get a permutation {1, 2, · · · , n} for a set of jobs J . If we
schedule the jobs according to this permutation sequentially, we’ll get:

Cj ≤ max
i′≤j

ri′ +
∑
k≤j

Lµ(j),k

Lemma 5 with a = 1 and b = 1, imply that:

∑
j

wjCj(alg) ≤ (1 +
1

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(κ+ 1)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

To minimize the approximation ratio, we substitute κ = 1
2

and obtain

∑
j

wjCj(alg) ≤ 3

 n∑
j=1

∑
i∈M

αi,jrj +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

 ≤ 3 ·OPT

where the last inequality follows from weak duality as α and β constitute a feasible dual
solution.

B Correction of Algorithm by Qiu et al. [?]

We now give a brief overview of the approximation algorithm given by Qiu, Stein, and Zhong
[?].

Interval-Indexed LP Formulation

In the first step we write an interval-indexed linear programming relaxation for the coflow
scheduling problem similar to that for the concurrent open shop problem by Wang and
Cheng [?].

Let C̄j denote the approximated completion time of coflow j obtained by an optimal
feasible solution to this LP relaxation. We first order the coflows in non-decreasing order of
these approximated completion times, i.e. we have the following.

C̄1 ≤ C̄2 . . . ≤ C̄n (19)

Let Vj denote the maximum load on any port by the first j coflows taken together in
the above ordering, i.e.

Vj = max

max
i


j∑

k=1

∑
o

dkio

 ,max
o


j∑

k=1

∑
i

dkio


 .

Qiu et al. [?] prove that these Vj values provide a good approximation for the optimal
completion times of the coflows. In particular, they show the following where C∗j denotes
the completion time of coflow j in an optimal schedule.∑

j

wjVj ≤
16

3

∑
j

wjC
∗
j (20)

20

Grouping Coflows

Divide time into geometrically increasing intervals as follows - [1], [2], [3, 4], [5, 8], [9, 16],
Let Il = (2l−2, 2l−1] denote the lth interval.

Now group the coflows based on the interval where their V values lie and let Sl denote
the set of coflows assigned to interval Il. In other words, all coflows j ∈ Sl, we have 2l−2 <
Vj ≤ 2l−1.

Algorithm 1

– For l = 1, 2, . . .
– Wait until the last coflow in Sl is released.
– Group all coflows in Sl and schedule as per Algorithm 1 in [?]. This would take time

at most Vk ≤ 2l−1 where k is the last job in the group.

Analysis

Qiu et al. claim the following (Proposition 1 in [?]).

Proposition 1 For any coflow j, let Cj(alg) denote the completion time of coflow j as
per Algorithm 1. Then we have

Cj(alg) ≤ max
1≤g≤j

{rg}+ 4Vj .

Since C∗j ≥ max
1≤g≤j

{rg}, Proposition 1 and Equation (20) together imply the following

theorem (Theorem 1 in [?]).

Theorem 2 There exists a deterministic polynomial time 67/3 approximation algorithm
for coflow scheduling, i.e. ∑

j

wjCj(alg) ≤
67

3

∑
j

wjC
∗
j .

Error

We now show that the Proposition 1 stated above is incorrect. Consequently, Theorem 1 no
longer holds. Recall that Algorithm 1 groups jobs based on their V values alone and does
not consider their release times.

Consider a simple case where m = 1 and we have just one input port and one output
port. Say we have two jobs j1 and j2 such that j1 needs to send 3 units of data and j2 needs
to send 1 unit of data. Also say rj1 = 0 and rj2 = 100. By definition, we have Vj1 = 3 and
Vj2 = 4; note that both the jobs belong to the same interval I3 = (2, 4]. Now since both jobs
belong to the same interval, Algorithm 1 waits for both the jobs to be released and then
schedules them together (after time 100). In this case, the claim in Proposition 1 clearly
does not hold for job j1.

Proposition 2 in [?] makes a similar claim for a grouping algorithm using randomized
intervals. Again, the above instance serves as a counterexample to the claim. Consequently,
Theorem 2 in [?] does not hold.

In the following section, we show that the deterministic grouping algorithm can be
modified to yield a 76

3
-approximation algorithm. Note that this is worse than the 67

3
factor

claimed earlier. It is not immediately clear whether the randomized algorithm from [?] can
be corrected via a similar modification.

21

B.1 Corrected Grouping Algorithm

We first solve the interval-indexed LP formulation to obtain approximated completion times
C̄j . Without loss of generality, we assume that the coflows are ordered as per Equation (19).

As shown by Leung, Li, and Pinedo (Theorem 13 in [?]), the analysis of Wang and
Cheng [?] can be extended to the case of general release times to obtain the following.∑

j

wjC̄j ≤
19

3

∑
j

wjC
∗
j (21)

This is analogous to Lemma 3 in [?] that shows that
∑
j wjVj ≤

16
3

∑
j wjC

∗
j where Vj

is the maximum load on any port by the first j coflows taken together (as per the ordering).
Since C̄j denotes the approximation completion time of coflow j as computed by the

valid LP relaxation, we also have the following where rj denotes the release time of coflow
j.

C̄j ≥ rj (22)

C̄j ≥ Vj (23)

B.1.1 Algorithm

Divide time into geometrically increasing intervals as follows - [1], [2], [3, 4], [5, 8], [9, 16],
Let Il = (2l−2, 2l−1] denote the lth interval.

Now group the coflows based on the interval where their C̄ values lie and let Sl denote
the set of coflows assigned to interval Il. So for all coflows j ∈ Sl, we have 2l−2 < C̄j ≤ 2l−1.

Algorithm

– For l = 1, 2, . . .
– Wait until the last coflow in Sl is released AND all coflows in Sl−1 have finished.

(whichever is later).
– Group all coflows in Sl and schedule as per Algorithm 1 in [?]. This would take time

at most Vk ≤ 2l−1 where k is the last job in the group.

Analysis

Let C̃l denote the time by which all coflows in Sl have been scheduled by the above algorithm.

Claim C̃l ≤ 2× 2l−1 = 2l for every group Sl.

Proof We prove by induction. For group S1, we start executing the schedule at maxj∈S1
rj ≤

maxj∈S1
C̄j ≤ 21−1 = 1 and the schedule takes time at most Vk ≤ 21−1 = 1 where k is the

last coflow in the group. So the base case is true.
Now assume that the claim is true for some group Sl. As per the algorithm, the coflows

in group Sl+1 start executing at C̃l or maxj∈Sl+1
rj whichever is later. By induction, we

are guaranteed that C̃l ≤ 2l. Also maxj∈Sl+1
rj ≤ maxj∈Sl+1

C̄j ≤ 2l. Thus the coflows in

group Sl+1 start executing latest at time 2l. We know that all these coflows require at most
Vk ≤ C̄k ≤ 2l time units to complete. As a result, all the coflows in this group are scheduled
by time 2l + 2l = 2l+1.

And thus the claim follows by induction.

Claim For any coflow j, let Cj(alg) denote the completion time of coflow j as per the
algorithm. Then Cj(alg) < 4C̄j .

22

Proof Consider any coflow j, and let l be such that j ∈ Sl. Hence we have C̄j > 2l−2. By
the previous claim, we have

Cj(alg) ≤ C̃l ≤ 2l = 4× 2l−2 < 4C̄j

Corollary 2 There is a deterministic 76
3

-approximation for coflow scheduling with arbi-
trary release times.

Proof Claim B.1.1 and Equation (21) together imply a 76
3

-approximation algorithm for
coflow scheduling with release times.

C Counterexample to Claim by Luo et al. [?]

Luo et al. [?] claim a 2-approximation algorithm for the coflow scheduling problem by proving
that it is equivalent to concurrent open shop scheduling. One of the key ingredients of their
proof is the following claim that is implicit in Lemma 3 in [?].

Claim (Restated from [?]) Given two coflows Gk and Gl, we can find a feasible schedule for
both the coflows such that Ck + Cl = min{∆(Gk) +∆(Gk

⋃
Gl),∆(Gl) +∆(Gk

⋃
Gl)}.

Counterexample

We show that Claim C is erroneous via a simple counterexample. Consider two coflows on a
3× 3 datacenter as shown in Figure 5. Note that while coflows G1 and G2 have ∆(G1) = 1
and ∆(G2) = 2, the combined coflow G1

⋃
G2 also has ∆(G1

⋃
G2) = 2. Consequently, the

RHS in Claim C equals ∆(G1) +∆(G1
⋃
G2) = 3.

1

1 1

1

v1u1

v2u2

u3
v3

u1

u3

v1

v2
u2

v3

Coflow G 1
Coflow G 2

1 2Time: 3 1 2

OR

1

1 1

1

v1u1

v2u2

u3
v3

u1

u3

v1

v2
u2

v3

Coflow G 1
Coflow G 2

1 2

Schedule 2

3 1 2

OR

Coflows:

Schedule 1

Fig. 5 Simple counterexample to Claim C

23

On the other hand, as seen in Figure 5, if coflowG1 is scheduled so that C1 = ∆(G1) = 1,
then the matching constraints force coflow G2 to have completion time C2 = 3. On the other
hand, delaying one edge of coflow G1, leads to a schedule with C1 = C2 = 2. In both cases,
we have C1 + C2 = 4 (instead of 3) leading to a contradiction to the claim.

24

	Introduction
	Preliminaries
	High Level Ideas
	Approximation Algorithm for Coflow Scheduling with Release Times
	Analysis
	An Alternative Approach Using LP Rounding
	A Combinatorial 3-approximation Algorithm For Concurrent Open Shop with Release Times
	Correction of Algorithm by Qiu et al. qiu2015minimizing
	Counterexample to Claim by Luo et al. luo2016towards

